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ABSTRACT 

An incredible amount of data is generated in the course of a functional neuroimaging 

experiment.  The quantity of data gives us improved temporal and spatial resolution with which 

to evaluate our results.  It also creates a staggering multiple testing problem.  A number of 

methods have been created that address the multiple testing problem in neuroimaging in a 

principled fashion.  These methods place limits on either the familywise error rate (FWER) or 

the false discovery rate (FDR) of the results.  These principled approaches are well established in 

the literature and are known to properly limit the amount of false positives across the whole 

brain. However, a minority of papers are still published every month using methods that are 

improperly corrected for the number of tests conducted.  These latter methods place limits on the 

voxelwise probability of a false positive and yield no information on the global rate of false 

positives in the results.  In this commentary we argue in favor of a principled approach to the 

multiple testing problem - one that places appropriate limits on the rate of false positives across 

the whole brain and gives the reader the information they need to properly evaluate the results. 
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The struggle between the appropriate treatment of false positives and false negatives is a 

fine line that every scientist must walk.  If our criteria are too conservative we will not have the 

power to detect meaningful results.  If our thresholds are too liberal our results will become 

contaminated by an excess of false positives.  Ideally, we hope to maximize the number of true 

positives (hits) while minimizing false reports. 

It is a statistical necessity that we must adapt our threshold criteria to the number of 

statistical tests completed on the same dataset.  This multiple testing problem is not unique to 

neuroimaging; it affects many areas of modern science.  Ask an economist about finding market 

correlations between 10,000 stocks or a geneticist about testing across 100,000 SNPs and you 

will quickly understand the pervasiveness of the multiple testing problem throughout scientific 

research (Storey and Tibshirani 2003; Taleb 2004).   

In this paper we argue for the use of principled corrections when dealing with the large 

number of comparisons typical of neuroimaging data.  By principled, we mean a correction that 

definitively identifies for the reader the probability or the proportion of false positives that could 

be expected in the reported results.  Ideally, the correction would be easy for the reader to 

understand.  Many researchers have avoided principled correction due to the perception that such 

methods are too conservative.  In theory and in practice, there is no reason for a principled 

correction to be either liberal or conservative.  The degree of 'conservativeness' generally can be 

adjusted by setting a parameter, maintaining accurate knowledge about the prevalence of false 

positives.  Later in the commentary, we will outline familywise error rate correction (FWER) and 

false discovery rate correction (FDR) as two examples of principled correction. 
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The Problem 

Many published fMRI papers use arbitrary, uncorrected statistical thresholds.  A 

commonly chosen threshold is p < 0.001 with a minimum voxel clustering value of 10 voxels.  

For a few datasets this threshold may strike an appropriate balance between sensitivity and 

specificity; and in a few cases it might be possible to specify the probability of a false positive 

with this threshold.  However, this uncorrected cutoff cannot be valid for the diverse array of 

situations in which it is used. The same threshold has been used with data comprising 10,000 

voxels and with data comprising 60,000 voxels – this simply cannot be appropriate.  The two 

situations have very different probabilities of false positives.  The use of a principled procedure 

would yield the same expected probability or proportion of false positives for any number of 

voxels under investigation. 

In a recent survey of all articles published in six major neuroimaging journals during the 

year 2008 we found that between 25-30% of fMRI articles in each journal used uncorrected 

thresholds in their analysis (Bennett, Baird et al. Under Review).  This percentage speaks to the 

fact that the majority of published research uses principled correction.  However, the meta-

analysis also highlights that a quarter to a third of published papers do not use principled 

correction, and that such papers continue to be published in high-impact, specialized journals.  

The proportion of studies using uncorrected thresholds is even higher within the realm of 

conference posters and presentations.  In a survey of posters presented at a recent neuroscience 

conference we found that 80% of the presentations used uncorrected thresholds.  In these 

unprincipled cases the reader is unlikely to have an accurate idea about the true likelihood of 

false positives in the results.   
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The prevalence of unprincipled correction in the literature is a serious issue.  During an 

examination of familywise error correction methods in neuroimaging, Nichols and Hayasaka 

(2003) compared techniques that included Gaussian Random Field Theory, Bonferroni, FDR, 

Šidák, and permutation.  They found that only 8 out of 11 fMRI and PET studies had any 

significant voxels after familywise correction had been completed, leaving three studies with no 

significant voxels at all.   Based on this data it is quite likely that results comprised wholly of 

false positives are present in the current literature.  Despite this fact new studies reporting 

uncorrected statistics are published every month. 

False positives can be costly in a number of ways.  One example of the negative 

consequences of false positives can be illustrated in a study completed by one of the current 

authors (MBM) in graduate school.   He conducted an fMRI study investigating differential 

activations between false memories and true memories using the Roediger and McDermott word 

paradigm (1995).  At the same time Schacter and colleagues were conducting a PET study using 

the same approach.  Using a liberal uncorrected threshold Schacter and colleagues found a few 

small regions of interest in the medial temporal lobe and superior temporal sulcus (Schacter, 

Reiman et al. 1996).  In their own results Miller and colleagues found two very different small 

clusters in the frontal and parietal cortex.  When the Miller et al. study was presented at the 

Society for Neuroscience conference (Miller, Erickson et al. 1996) it was made clear that 

multiple testing correction was necessary.  None of the results survived correction and the study 

was never released, while the uncorrected Schacter results were published in a major 

neuroimaging journal.   Since that time there has been a scattering of studies reporting different 

patterns of brain activations for false memories and for true memories.  Virtually all of them 

have used uncorrected thresholds and have proven difficult to replicate.  This situation raises two 
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issues.  The first issue is the amount of time and resources that have been spent trying to extend 

results that may never have existed in the first place. The second issue is the prevailing skewed 

view of the literature that brain activations can be reliably discerned between false and true 

memories because only reports with positive results will be published. 

Less rigorous control of Type I errors would not be so bad if inferences based on false 

positives were easily correctable.  However, this does not seem to be the case within the current 

model of publication.  If researchers failed to reproduce the results of a currently published study 

it would be quite difficult to disseminate their null findings.  This forms one of the most 

profound differences between Type I and Type II error: false negatives are correctable in future 

publications while false positives are difficult to refute once established in the literature.   

This imbalance in the propagation of Type I and Type II errors contributes to an issue known as 

the ‘File Drawer Problem’ (Rosenthal 1979).  This refers to the publication bias that ensues 

because the probability of a study being published is directly tied to the significance of a result.  

While presentation of null results is not unheard of (see Baker, Hutchinson, 2007) such 

publications are generally considered the exception and not the rule. 

Another important cautionary tale is our recent investigation of false positives during the 

acquisition of fMRI data from a dead Atlantic salmon (Bennett, Baird et al. 2009; Bennett, Baird 

et al. Under Review).  Using standard acquisition, preprocessing, and analysis techniques we 

were able to show that active voxel clusters could be observed in the dead salmon’s brain when 

using uncorrected statistical thresholds.  If any form of correction for multiple testing was 

applied these false positives were no longer present.  While the dead salmon study can only 

speak to the role of principled correction in a single subject, we believe it effectively illustrates 

the dangers of false positives in any neuroimaging analysis. 
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A bit of clarification may be important at this point.  Our goal should not be to completely 

eliminate false positives.  To be completely certain that all of our results are true positives would 

require obscenely high statistical thresholds that would eliminate all but the very strongest of our 

legitimate results.  Therefore we must accept that there will always be some risk of false 

positives in our reports.  At the same time, it is critical that we be able to specify how probable 

false positives are in our data in a way that is readily communicated to the reader.   

In this discussion of false positives it is also important that we not minimize the danger of 

high false negative rates.  Being over-conservative regarding the control of Type I error comes at 

the expense of missing true positives.  Perhaps for this reason there have been some voices in the 

imaging community that argue against principled correction due to the resulting loss of statistical 

power.  Again, a principled correction does not necessarily lead to a loss of power.  The 

researcher can set a liberal criterion in FDR or FWE and the readers can use their precise 

knowledge of the false positive rate to evaluate the reported results.   

 

Our Argument 

There is a single key argument that we wish to make regarding proper protection against 

Type I error in fMRI.  All researchers should use statistical methods that provide 

information on the Type I error rate across the whole brain.  It doesn’t matter what method 

you use to accomplish this.  You can report the false discovery rate (Benjamini and Hochberg 

1995), or use one of several methods to control for the familywise error rate (Nichols and 

Hayasaka 2003).  You can even do a back-of-the-napkin calculation and use a Bonferroni-

corrected threshold if you wish.  The end goal is the same: giving the reader information on the 

prevalence of false positives across the entire family of statistical tests. 
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 [Figure 1 About Here] 

We would further argue that an investigator could still use an uncorrected threshold for 

their data as long as proper corrected values detailing the prevalence of false positives are also 

provided.  In this manner you could threshold your data at p < 0.001 with a 10 voxel extent as 

long as you presented what FDR or FWE threshold would be required for the results to stay 

significant.  One example can be seen in the above figure.  In this image voxels that survive an 

uncorrected threshold are depicted in cool colors while voxels that survive FDR correction are 

depicted in warm colors.  This allows a researcher to ‘have their cake and eat it too’.  Again, the 

key to our argument is not that we need to use correction simply for correction’s sake, just that 

our readers are made aware of the false positive rate across the whole brain. 

 

Techniques For Principled Correction 

There are a wide variety of methods that can be used to hold the false positive rate at 

specified levels across the whole brain.  One approach is to place limits on the familywise error 

rate (FWER).  Using this method a criterion value of 0.05 would mean that there is a 5% chance 

of one or more false positives across the entire set of tests.  This yields a 95% confidence level 

that there are no false positives in your results.  There are many methods that can be used to 

control the FWER in neuroimaging data: the Bonferroni correction, the use of Gaussian Random 

Field Theory (Worsley, Evans et al. 1992), and nonparametric permutation correction techniques 

(Nichols and Holmes 2002).  Nichols and Hayasaka (2003) have authored an excellent article 

reviewing these techniques.  The Bonferroni correction is typically seen as too conservative for 

functional neuroimaging since it does not take into account spatial correlation between voxels.  

Gaussian RFT adapts to spatial smoothness of the data, but was shown to be quite conservative 
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at low levels of smoothness.  The use of permutation-based techniques to control the FWER 

emerged as an ideal choice for adequate correction while maintaining high sensitivity. 

Another approach to principled correction is to place limits on the false discovery rate 

(Benjamini and Hochberg 1995; Genovese, Lazar et al. 2002).  Using this method a criterion 

value of 0.05 would mean that on average 5% of the observed results would be false positives.  

The goal of this approach is not to completely eliminate familywise errors, but to control how 

pervasive false positives are in the results.  This is a weaker control to the multiple testing 

problem, but one that still provides precise estimates of the percentage of false positives.  

The advantages and disadvantages of each correction approach are illustrated graphically 

using simulated data in Figure 2.  The simulated data is set up so that the uncorrected results 

have a power of 0.80.  Controlling for the familywise error rate with the criterion p(FWE) = 0.05 

can be seen to virtually eliminate false positives while dramatically reducing the amount of 

detected signal.  In this example power is reduced to 0.16.  Controlling the false discovery rate 

with the criterion FDR = 0.05 increases the number of false positives relative to FWER 

techniques, but also increases the ability to detect meaningful signal.  In this example power is 

increased to 0.54. 

[Figure 2 About Here] 

If you are concerned about power, you can appropriately adjust the cutoff in FWE or FDR.  

For instance, it isn’t strictly necessary to use 0.05 in either FWE or FDR.  It might yield a better 

balance of power and false positive protection to use 0.10 or even something higher.  You will be 

more likely to find true sources of activation and the reader will still have a precise idea about 

the prevalence of false positives. 
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It is important to understand the appropriate use of the correction method you select.  For 

instance, one commonly used approach is the small-volume correction (SVC) method in SPM 

(http://www.fil.ion.ucl.ac.uk/spm/).  The use of SVC allows researchers to conduct principled 

correction using Gaussian Random Field Theory within a predefined region of interest.  Ideally 

this would be a region defined by anatomical boundaries or a region identified in a previous, 

independent dataset.  However, many researchers implement SVC incorrectly, choosing to first 

conduct a whole-brain exploratory analysis and then using SVC on the resulting clusters (cf. 

Loring, Meador et al. 2002; Poldrack and Mumford 2009).  This is an inappropriate approach 

that does not yield a principled correction.  Another method that is often incorrectly used is the 

AlphaSim tool included in AFNI (http://afni.nimh.nih.gov/afni/).  For effective false positive 

control AlphaSim requires that an estimate of the spatial correlation across voxels be modeled 

using the program 3dFWHM.  Many researchers simply input the amount of Gaussian smoothing 

that was applied during preprocessing, leading to incorrect clustering thresholds as output.  

Errors during estimation of the spatial smoothness can also lead to incorrect values. 

In the future we may have statistical methods that are better able to address the multiple 

testing problem.  Hierarchical Bayes models have been offered as one approach (Lindquist and 

Gelman 2009).  We may even move away from the binary decision of significance and begin to 

examine effect sizes in earnest (Wager 2009).  Still, we must examine the balance of Type I and 

Type II error in the context of where our analysis techniques are today.  At present the general 

linear model is by far the most prevalent method of analysis in fMRI.  Mumford and Nichols 

(2009) found that approximately 92% of group fMRI results were computed using an ordinary 

least squares (OLS) estimation of the general linear model.  This percentage is unlikely to shift 
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dramatically in the next 12-36 months.  Our focus should remain on how to improve OLS 

methods in the near term as we move toward new analysis techniques in the future. 

 

Predetermined cluster size as a partial correction 

In neuroimaging we often rely on the fact that legitimate results tend to spatially cluster 

together.  The assumption being that voxel clustering provides some assurance against Type I 

errors.  While predefined thresholds in combination with predetermined clustering requirements 

may represent a sufficient approximation of a proper threshold, it is in general an unprincipled 

approach to the control of Type I error rates. 

Many authors justify this approach by referring to the results of Forman et al. (1995), who 

examined clustering behavior of voxels in fMRI.  The results of Forman et al. suggest that a 

threshold of p < 0.001 combined with a 10 voxel extent requirement should more than 

adequately control for the prevalence of false positives.  However, the Forman et al. data was 

only computed across two-dimensional slices, not in 3D volumes.  The findings of Forman et al. 

simply do not apply to modern fMRI data. 

It should also be noted that we are not arguing that p < 0.001 with a 10 voxel threshold is 

wholly inappropriate.  For example, Cooper and Knutson (2008) used the AlphaSim utility in 

AFNI to determine that a corrected threshold of p < 0.001 with a 10 voxel extent threshold would 

be appropriate to keep the familywise error rate at 5% in their particular dataset.  The problem is 

that this threshold is specific to the parameters of their dataset, and may be inappropriate in other 

datasets. Arnott et al. (2008) used the same AFNI routine and estimated that an 81 voxel extent 

was required to ensure that familywise error was kept below 5%.  It is possible to use the 

combination of a p value and a cluster size in a principled way, but it requires computing the 
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proper values for each and every analysis.  The cluster size criteria can change quite substantially 

from dataset to dataset.  Further, it can be the case that required cluster sizes become so large that 

legitimate results with a smaller volume are missed. 

 

Conclusions 

The topic of proper Type I error protection is not a new element of discussion in the field 

of neuroimaging.  The need to correct for thousands of statistical tests has been recognized since 

the early PET imaging days (Worsley, Evans et al. 1992).  It is uncertain why uncorrected 

thresholds have lingered so long.  Perhaps many researchers simply recognized it as an accepted, 

arbitrary threshold in the same manner p < 0.05 is an accepted, arbitrary threshold throughout 

other scientific fields.  This approach may have been acceptable in the past, but within the last 

decade we, as a field, have come under increased scrutiny from the public and from other 

scientists.  At a time when so many are looking for us to slip up we believe it is time to set a new 

standard of quality with regard to our data acquisition and analysis.   

The fundamental question that that all researchers must face is whether their results will 

replicate in a new study.  The prevalence of false positives in your results will directly influence 

this ability.  We are all aware that the multiple testing problem is a major issue in neuroimaging.  

How you correct for this problem can be debated, but principled protection against Type I error 

is an absolute necessity moving forward. 
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FIGURE CAPTIONS 
 
 

Figure 1.   Example figure of a hybrid corrected/uncorrected data presentation.  Areas that are 

significant under an uncorrected threshold of p < 0.001 with a 10 voxel extent criteria are shaded 

in blue.  Areas that are significant under a corrected threshold of FDR = 0.05 are shaded in 

orange.  

 

Figure 2.  Demonstration of correction methods for the multiple testing problem.  a) A raw image 

of the simulated data used in this example.  A field of Gaussian random noise was added to a 

100x100 image with a 50x50 square section of signal in the center.  b) Thresholded image of the 

simulated data using a pixelwise statistical test.  The threshold for this test was p < 0.05.  Power 

is high at 0.80, but a number of false positives can be observed.  c) Thresholded image of the 

simulated data using a Bonferroni FWER correction.  The probability of a familywise error was 

set to 0.05.  There are no false positives across the entire set of tests, but power is reduced to 

0.16.  d) Thresholded image of the simulated data while controlling the false discovery rate.  The 

FDR for this example was set to 0.05.  Out of the results 4.9% are known to be false positives, 

but power is increased to 0.54. 
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